Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Nat Prod ; 87(4): 1103-1115, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38600744

ABSTRACT

Twelve new alkaloids, scolopenolines A-L (1-7, 9-11, 13, 14), along with six known analogues, were isolated from Scolopendra subspinipes mutilans, identified by analysis of spectroscopic data and quantum chemical and computational methods. Scolopenoline A (1), a unique guanidyl-containing C14 quinoline alkaloid, features a 6/6/5 ring backbone. Scolopenoline B (2) is a novel sulfonyl-containing heterodimer comprising quinoline and tyramine moieties. Scolopenoline G (7) presents a rare C12 quinoline skeleton with a 6/6/5 ring system. Alkaloids 1, 8, 10, and 15-18 display anti-inflammatory activity, while 10 and 16-18 also exhibit anti-renal-fibrosis activity. Drug affinity responsive target stability and RNA-interference assays show that Lamp2 might be a potentially important target protein of 16 for anti-renal-fibrosis activity.


Subject(s)
Alkaloids , Animals, Poisonous , Chilopoda , Animals , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Molecular Structure , Arthropods/chemistry , Fibrosis/drug therapy , Kidney/drug effects , Quinolines/pharmacology , Quinolines/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Humans
2.
Front Plant Sci ; 9: 1346, 2018.
Article in English | MEDLINE | ID: mdl-30337932

ABSTRACT

The root of Panax notoginseng (P. notoginseng) is one of the most highly valuable medicinal herbs in China owing to its pronounced hemostatic and restorative properties. Despite this important fact, growing P. notoginseng is seriously limited by root-rot diseases. In studies aimed at developing a solution to this problem, environment-friendly essential oils (EOs) of five medicinal plants of the family Zingiberaceae were tested for their inhibitory effects on the growth of three main soil pathogens associated with the root-rot diseases of P. notoginseng. The results showed that the EOs of Alpinia katsumadai Hayata and Zingiber officinale Roscoe promote significant reductions in the mycelium growth of the pathogen in vitro at a concentration of 50 mg mL-1, which is much higher than that needed (5 mg mL-1) to reduce growth by the positive control, flutriafol. Furthermore, the chemical components of the two EOs were determined by using GC-MS analysis. Eucalyptol was found to account for more than 30% of the oils of the two plants, with the second major components being geranyl acetate and α-terpineol. These substances display different degrees of fungistasis in vitro. To further determine the effects of the EO of Zingiber officinale (Z. officinale) in vivo, soilless cultivation of P. notoginseng with pathogen inoculation was conducted in a greenhouse. Addition of the petroleum ether extract (approximately equal to EO) of Z. officinale to the culture matrix causes a large decrease in both the occurrence and severity of the P. notoginseng root-rot disease. The decreasing trend of net photosynthetic rate (Pn), stomatal conductance (gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr) were all alleviated. In addition, the activities of catalase (CAT), peroxidase (POD), and the malondialdehyde (MDA) content were also largely reduced after pathogen infection, with the root activity being higher than that of the control. Taken together, the findings reveal that the EOs from plants might serve as promising sources of eco-friendly natural pesticides with less chemical resistance.

3.
Molecules ; 23(5)2018 Apr 26.
Article in English | MEDLINE | ID: mdl-29701709

ABSTRACT

Replanting obstacles of Panax notoginseng caused by complex factors, including pathogens, have received great attention. In this study, essential oils (EOs) from either Alpinia officinarum Hance or Amomum tsao-ko (Zingiberaceae) were found to inhibit the growth of P. notoginseng-associated pathogenic fungi in vitro. Subsequent GC-MS analysis revealed the chemical profiles of two plant derived EOs. Linalool and eucalyptol were found to be abundant in the EOs and tested for their antifungal activities. In addition, the synergistic effects of A. tsao-ko EOs and hymexazol were also examined. These findings suggested that Zingiberaceae EOs might be a good source for developing new green natural pesticides fighting against root-rot of P. notoginseng.


Subject(s)
Antifungal Agents/pharmacology , Oils, Volatile/pharmacology , Panax notoginseng/microbiology , Plant Diseases/prevention & control , Zingiberaceae/chemistry , Acyclic Monoterpenes , Antifungal Agents/chemistry , Cyclohexanols/isolation & purification , Cyclohexanols/pharmacology , Drug Synergism , Eucalyptol , Fungi/drug effects , Gas Chromatography-Mass Spectrometry , Monoterpenes/isolation & purification , Monoterpenes/pharmacology , Oils, Volatile/chemistry , Oxazoles/pharmacology , Panax notoginseng/drug effects , Panax notoginseng/growth & development , Plant Diseases/microbiology , Plant Oils/chemistry , Plant Oils/pharmacology , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...